

GREEN ROOF STUDY

PARTNERS IN PLANNING 2020

COLLECTIVE ARCHITECTURE

COLLECTIVEARCHITECTURE

Architecture & Design Scotland
Ailtearachd is Dealbhadh na h-Alba

MEADOWBANK MASTERPLAN

OVERVIEW

Client: City of Edinburgh Council

Location: Edinburgh

Stage of the Project: Planning

(AMSC - Masterplan)

Number of units proposed: 596

Tenure: Mix under review but at least 25% affordable housing

MEADOWBANK MASTERPLAN

The Proposal

- · A mix of housing typologies
- Community and commercial space (potential for a GP surgery and Nursery)
- Pedestrian Priority Development
- Minimum parking to help Edinburgh meet its Net Zero Carbon Target

Protection of existing rare trees

SuDs APPROACH

- Currently <u>NO</u> Green Roofs on residential buildings.
- Integrated SuDs approach using swales and small rain gardens to treat water run off at source.

ROOF TYPES

EXTENSIVE

Substrate depth: 60-80mm

Low Cost

No irrigation

SEMI-INTENSIVE

Substrate depth: 120-250mm

Saturation weight: 120-300 kg/m2

Medium Cost

Some irrigation may be required

INTENSIVE

Substrate depth: 200-+1000mm

Saturation weight: 150-500 kg/m2

Higher Maintenance

Higher Cost

Some irrigation may be required

ROOF TYPES

EXTENSIVE WILDFLOWER
BIODIVERSE

SOLAR GREEN/ BIOSOLAR

BLUE ROOF

PROPOSAL: PLACE BASED APPROACH

SITE A

Extensive Biodiverse
Blue roofs with
raingardens and
swales at ground level

SITE B

A variety of roof types:

- Intensive roofs with raised planters
- Extensive Biodiverse to roof tops and stores at ground level connecting to swales

SITE C

A variety of roof types:

- Extensive podium decks with raised planters at ground level
- A combination of Biosolar, biodiverse and semi-intensive resident terraces at roof level

DRAINAGE

Working to greenfield run-off rate and attenuated for up to 200 year storm + 40% climate change allowance.

Green Roof Impact:

- Reduction in attenuation volumes required and tank sizes by 37.8%.
- Removal of SuDs treatment required for traditional roof.
- Potentially decreasing underground pipework and clashes
- Reducing interference with contaminated land and remediation works

	CURRENT SCHEME	OPTION A		
Site	Traditional Roof + Hardstanding Areas Attenuation Volume (m³)	Green Roof + Hardstanding Areas Attenuation Volume (m³)	Reduction (m³)	% Difference
Α	950	715	235	24.7
B and C	2,130	1,200	930	43.6
Total	3,080	1,915	1,165	37.8

SUDS POND AREA ANALYSIS

SuDs pond area: 0.36ha

Density per hectare: 110 homes

Impact of SuDs pond:

Approx. unit loss per hectare: 40 units

STRUCTURAL IMPLICATIONS

Green Roof Impact:

- Typical cost increase as dead loads rise.
- However, proportionally the structural load diminishes as building height increases
- May impact on method of construction
- Therefore, not so cost effective for buildings less than 3 storeys

Structural load will dimish as the height of building increase

6 storey home:

Dead load impact proportionately reduced

COST IMPLICATIONS & VALUE

Green Roof Impact:

- Increase in roofing costs by 6.61 %
- However, minimal uplift in % of Construction Cost: 0.23% increase
- Net Present Value positive

Value:

Value is not just a monetary Measurement:

£209.035 / 596 homes = £350.72

Life Cycle Costs:

- Net Present Value: +145,609.84 (Based on a 3.5% discount rate)
- Initial Rate of Return: 7.06%
- Payback Period: Estimated to be 6-20 years
- Gross Rate of Return: £450,607

WIDER BENEFITS

- Health and Well being Creating links to GP surgery Horticultural Therapy Increasing green space
- Community
 Urban Growing
 Visual Amenity
- Wildlife
 Creation of Habitats
 Supporting endangered native
 Northern Brown Argus Butterfly

Difficult to put a price on these...

CLIMATE CHANGE

- In the UK Buildings are responsible for 44% of CO2 emissions
- 26% comes from housing

How can Green roofs help?

- Cooling buildings =
- reduced cooling loads
- reduced energy consumption
- reduced energy costs
- reduced CO2 levels
- Cooling the air =
- reduced heat island effects
- Increasing greenery =
- improved air quality
- Stormwater management

MEADOWBANK GREEN ROOF STUDY | GREEN ROOF USAGE

CONCLUSION

Are green roofs viable in Scotland?

YES...

- Small uplift in roofing cost, but minimal % uplift on construction cost
- Net Present Value is positive
- Payback in 6-20 years
- Significant reduction of attenuation volume resulting in below ground infrastructure cost savings
- Not as economical on structures below 3 stories but can be strategically located to maximize wider benefits: social, ecological, environmental and wellbeing

https://www.nature.scot/sites/default/files/2020-05/Meadowbank%20Develoment%20Green%20Roof%20Options% 20Appraisal

MEADOWBANK DEVELOPMENT

OPTIONS APPRAISAL

GREEN ROOF

COLLECTIVEARCHITECTURE

APRIL 2020